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Abstract

®

CrossMark

This work presents a three-dimensional constitutive model for the martensitic transformation in
polycrystalline shape memory alloys (SMAs) under large deformation. By utilizing the logarithmic
strain and rate, the model is able to account for large strains and rotations that SMA-based
components may undertake, but also resolves the stress errors caused by the non-integrable

objective rates that are widely used in current commercial finite element software. The model is
developed through classical thermodynamic laws combined with the standard Coleman—Noll
procedure. The scalar martensitic volume fraction and the second-order transformation strain tensor
are chosen as the internal state variables to capture the material response exhibited by
polycrystalline SMAs. A detailed implementation procedure of the proposed model is described
through a user-defined material subroutine. Numerical experiments considering SMA components
including a bar, a beam, a torque tube and a solid flexible structure under stress/thermally-induced
phase transformations are investigated via the proposed model, and the results under cyclic loading
are compared against the predictions provided by the Abaqus nonlinear solver. The development
framework of the proposed model and its implementation procedure can be extended to incorporate

other nonlinear phenomena exhibited by SMAs, such as transformation-induced plasticity,

viscoplasticity, and damage under large deformation.

Keywords: shape memory alloys, constitutive model, large deformation, logarithmic strain,

stress errors

(Some figures may appear in colour only in the online journal)

1. Introduction

Shape memory alloys (SMAs) belong to a specialized subgroup
of multifunctional materials known as active materials, and are
capable of recovering their pre-defined geometry when sub-
jected to a thermal stimulus above certain temperatures. This
unique property of SMAs is achieved through a solid-to-solid

0964-1726/19/074004+-24$33.00

state diffusionless phase transformation between the high-
symmetry, high-temperature austenitic phase and the low-
symmetry, low-temperature martensitic phase [1]. Since the
discovery of shape memory effect, SMAs have been exten-
sively investigated as sensors and actuators towards building
smart systems integrated with adaptive and morphing features
[2, 3]. Recently, aerospace researchers have considered to use

© 2019 IOP Publishing Ltd  Printed in the UK
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the SMA-based actuators to reconfigure the shape of a super-
sonic aircraft to meet the noise and efficiency requirements in
response to the real-time changing ambient environment, which
has the great potential to realize a commercially viable overland
civil supersonic flight in the near future [4, 5].

A substantial number of constitutive theories for SMAs
have been proposed so far with the majority of them based on
the infinitesimal strain theory for small deformation analysis.
Thorough reviews can be found from [6—19]. In general,
constitutive models for SMAs can be approximately cate-
gorized into three different types: phase-field theory based
models, crystal-plasticity theory based models, and classical
Jo-flow theory based models. The phase-field models, in
which order parameters are utilized to differentiate austenitic
and martensitic phases, can track microstructure evolution,
such as phases front movement, during the phase transfor-
mation process [11, 12, 20-24]. Therefore, phase-field theory
based models are well suited to investigate the dynamic
nucleation and phase morphology growth for martensitic
phase transformation in SMAs. The enormous computational
time, however, needed to solve the phase kinetic partial
differential equations hinders its popularity to the extent that
macroscopic structural response is concerned. In regard to
crystal-plasticity theory based models [25-27], with the
consideration of the effect of material microstructure (e.g.
crystal orientation, texture, etc), these models are able to
capture the anisotropy in material response (e.g. tension-
compression asymmetry) exhibited by textured polycrystal-
line SMAs. Similar to phase-field methods, the complex
implementation procedure of these models to incorporate the
microstructure information makes them computational costly.
Following the legacy of J,-flow theory, phenomenological
SMA models have attracted attention in the engineering
community where repetitive designs and optimization proce-
dures on SMA components are needed to find target shapes.
By introducing a set of internal state variables (such as
volume fraction and transformation strain tensor), J, theory-
based SMA models are able to simulate the macroscopic
response of an SMA component in an efficient way. The
simplicity of this model type and its well-established imple-
mentation procedure have allowed it to be widely used among
real engineering applications [14, 28-34].

Constitutive models based on the infinitesimal strain theory
are able to predict SMA response accurately under small defor-
mation situations. However, it has been reported that SMAs can
reversibly deform to a relatively large strain regime up to 8%
[35, 36]. Also for specific boundary value problem such as
fracture in SMAs, the strain levels close to the crack tip are well
beyond 10% [37, 38] within the finite strain regime. In addition
to such relatively large strain, SMA-based actuators (e.g. spring,
beam, torque tube) may also undergo large rotation during their
deployment. For example, an SMA beam component is used as a
bending actuator in order to realize a morphing engine shape,
where the SMA experienced large bending induced rotation [3].
Another example is the SMA tube component utilized as a tor-
sional actuator to repeatedly rotate a deployable and retractable
solar panel [39], where the SMA tube is subjected to cyclic large
rotation. Combining the aforementioned two facts that SMAs

may undergo large strain and rotation, it is necessary to develop a
constitutive model based on a finite deformation framework to
provide an accurate prediction for the response of SMAs.

Two kinematic assumptions are often employed in the
finite deformation theory, i.e. the multiplicative decomposi-
tion of the deformation gradient and the additive decom-
position of the strain rate tensor. In the multiplicative
approach, the deformation gradient is usually decomposed
into an elastic part multiplied with an inelastic part. Finite
strain SMA models based on the multiplicative decomposi-
tion can be obtained from literature [34, 40—45], among
which some advanced capabilities are considered. For
examples, Wang and coworkers [43] presented a finite strain
SMA model with the fully thermomechanically coupled fea-
ture, the consideration of coexistence of different martensitic
variants, and accounting for temperature effect on the hys-
teresis size. In the work of Stupkiewicz and Petryk [44], they
proposed a finite strain SMA model to capture the tension-
compression asymmetry phenomenon. Damanpack and co-
workers [45] also developed an SMA model that considers
anisotropic behaviors and reorientation in SMAs at finite
deformation. However, it is known that finite strain model
based on additive decomposition significantly reduces the
complexities of model structure compared to multiplicative
models, which in return facilitates the computational effi-
ciency of the finite strain model as a 3D design tool. There-
fore, they are widely used in current available finite element
(FE) softwares (e.g. Abaqus, ANSYS). However, to satisfy
the principle of objectivity, additive models are required to
use an objective rate in its rate form hypoelastic constitutive
relation. A number of objective rates (such as Zaremba-—
Jaumann—Noll rate, Green—-Naghdi-Dienes rate, and Trues-
dell rate) have been proposed to meet this goal. However,
those objective rates are not essentially ‘objective’ because of
their failure to integrate the rate form hypoelastic relation to
yield a free energy based hyperelastic stress—strain relation
[46]. As a result, spurious phenomena (e.g. shear stress
oscillation, artificial stress residuals, etc) are often observed in
the predicted response even for simple elastic materials
through these objective rates. More details regarding this
issue are addressed in appendix B.

It was not until the logarithmic rate was proposed in the
literature [47-53] that the previously mentioned self-incon-
sistency issue related to non-integrable objective rates was
resolved. As was proved in the work [47], the logarithmic rate
of Eulerian logarithmic strain h is exactly identical to the
strain rate tensor D, and the logarithmic strain is the only one
among all other strain measures enjoying this important
property. Therefore, the finite strain models using logarithmic
strain and rate are not only able to capture large strain and
large rotation but also are capable of resolving the afore-
mentioned spurious phenomena. This new development in
finite deformation theory not only provides solutions to
classical finite -elastoplastic problems for conventional
metallic materials [54, 55], but also sheds light on the finite
strain model development for active materials such as SMAs.
Few SMA models using an additive approach can be found
from [56-62], but some of the very important SMA phase
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transformation characteristics have not been addressed among
them, such as the smooth transition during the phase trans-
formation, the stress dependent transformation strain to
account for the coexistence of oriented/self-accommodated
martensitic variants, and a stress dependent critical driving
force to consider the effect of applied stress levels on the size
of hysteresis loop. To this end, this work presents a finite
strain SMA model formulation based on the additive
decomposition using the logarithmic strain and rate. As a
continuous development from the infinitesimal SMA model
[29], the proposed model has a simple model structure and
considers three very important characteristics for SMA
response as its infinitesimal counterpart does. These devel-
opments combined result in improved computational effi-
ciency and robustness for the proposed finite strain model to
predict the SMA response at large deformation, without
introducing additional intermediate state variables, such as
Mandel stress, that are utilized in the multiplicative models. It
is noted that the primary focus of this work is mainly on the
formulation of a finite strain SMA model, rather than the
development of a constitutive model that can capture the full
complexities of the SMA thermomechanical deformation.
Thus, tension-compression, latent-heat effects, reorientation
between orientated and self-accommodated martensitic var-
iants, cyclic evolution features (transformation-induced plas-
ticity, two-way shape memory effect at stress-free conditions)
are not included here for simplicity. Moreover, this work
carefully examines the artificial stress errors caused by using
other non-integrable objective rates in current commercial FE
packages. The capability of the proposed model to eliminate
such stress errors shows significant importance for the ana-
lysis of SMA-based actuators, e.g. SMA beam and SMA
torque tube subjected to cyclic large deformation.

This paper is organized as follows. Section 2 presents the
kinematic preliminaries. Section 3 concentrates on the model
development based on the logarithmic strain and logarithmic
rate. The derivation of the consistent tangent stiffness matrix
and the consistent thermal matrix are also provided. In
section 4, the detailed implementation procedure for the
proposed model is described by using a user-defined material
subroutine (UMAT) through the FE software Abaqus. Num-
erical examples are studied to demonstrate the capability of
the proposed model in section 5. Conclusions are presented in
section 6. A detailed calibration procedure for the material
parameters used in this model is also provided in the
appendix C.

2. Preliminaries

2.1. Kinematics

Let material point P from body B be defined by a position
vector X in the reference (undeformed) configuration at time
1o, and let vector x represent the position vector of that mat-
erial point in the current (deformed) configuration at time .
Therefore, the deformation process of point P between the

reference configuration and the current configuration can be
defined through the well-known deformation gradient tensor
Fx, 1):

ox
F(x, t) = — 1
x, 1) X ey
and the velocity field v can be defined as
dx
V= —=X 2
7 2

based on the velocity field v, the velocity gradient L can be
derived as

o
ox

the following polar decomposition equation for deformation
gradient F is well known

F = RU = VR 4)

L — FF-! 3)

where R is the rotation tensor, U and V are the right (or
Lagrangian) and the left (or Eulerian) stretch tensors,
respectively, by which the right Cauchy—Green tensor C and
the left Cauchy—Green tensor B can be obtained, as follows

C = F'F = U2, 5)
B = FFT = V2, (6)

where I is the second order identity tensor. The logarithmic
strain (also called Hencky or true strain) of Lagrangian type H
and Eulerian type h can thus be defined as

H:%mozmwx 7

h:%mmyﬂmw. (8)

It is also well known that the velocity gradient L. can be
additively decomposed into a symmetric part, the strain rate
tensor D, and an anti-symmetric part, the spin tensor W
L=D+W,

D:%@+U) wz%@—ﬂ)

©))

2.2. Logarithmic strain, logarithmic rate and logarithmic spin

As was mentioned in section 1, two widely accepted kine-
matic assumptions, i.e. the multiplicative decomposition of
deformation gradient F and the additive decomposition of the
strain rate tensor D, are usually considered in finite defor-
mation theory. The multiplicative models use a hyperelastic
constitutive relation while a rate form hypoelastic constitutive
equation is usually adopted for additive models. The rate form
hypoelastic constitutive theory using objective rates has been
criticized for its non-integrability because it can not well
define an essential elastic material behavior [63], this includes
many well known objective rates such as Zaremba—Jaumann
rate, Green—Naghdi rate, Truesdell rate, etc [46].
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The aforementioned problems about objective rates were
solved in the work by Xiao er al [46—48], Bruhns et al
[49-51] and Meyers et al [52, 53], where they proved that the
logarithmic rate of the Eulerian logarithmic strain h is iden-
tical with the strain rate tensor D, by which a hypoelastic
model can be exactly integrated to a hyperelastic finite strain
model [47]. This unique relationship between logarithmic
strain h and the strain rate tensor D is expressed as follows

h"® = h + hQs — Qlosh = D, (10)

where /¢ is called the logarithmic spin introduced by [47]
defined as

1+ /) 2
Qg = W b;Db; (11
) * ;[1 — /N * ln()\,-/)\j)) i (D

in which A\, ; (i, j =1, 2, 3) are the eigenvalues of left
Cauchy—Green tensor B and b;, b; are the corresponding
subordinate eigenprojections. As long as the logarithmic spin
tensor Q%8 is defined, the second order rotation tensor Rl"g,
associated with 2, can be determined through the following
differential equation (12). In general cases, the initial condi-
tion is assumed as R8|,_q = I

Qlog — RlUg(Rlog)T (12)
follow the corotational integration definition from [64], and
assume the initial conditions h|,—y = 0, equation (10) yields
the total logarithmic strain h after the logarithmic corotational
integration

corot.

h= D dr = (R°®)" ( f TRPEDe(RIE)T dﬂ)Rlog.
0
(13)

2.3. Additive decomposition of logarithmic strain

The kinematic assumption starts with the additive decom-
position of the strain rate tensor D into an elastic part D¢ plus
a transformation part D"

D = D¢ + D". (14)

The elastic strain rate part D¢ and the transformation

. . . . oo
strain rate part D” in equation (14) can be rewritten as h“~"

> 1r—

and h
tively

fog by virtue of the relation in equation (10) respec-

lole_log _ De; l‘jltr_log — pr. (15)

By combining equations (10), (14) and (15), the fol-
lowing equation can be obtained

° [o, °e_lo ° tr_lo,
h =h"" s

+h (16)

Similar to the results obtained from equation (13),
equation (16) can yield the following relation after applying
the logarithmic corotational integration

t
h¢ = D¢ dr = (Rlog)T (f RlugDe(Rlog)T dt/)Rlog,
corot. 0
(17a)

t
h” = D" dt = (Rlug)T (f Rlothr(Rlog)T dt/)Rl”g.
0

corot.

(17b)

Based on the additive decomposition on the strain rate
tensor, combing equations (14), (16), (17a) and (17b), the
following additive decomposition on the total logarithmic
strain h can be achieved, i.e. the total logarithmic strain h can
be additively split into an elastic strain like part h® plus a
transformation strain like part h’

h = h¢ + h". (18)

3. Model formulation

3.1. Thermodynamic framework

The Gibbs free energy potential G is defined to be a con-
tinuous function dependent on Kirchhoff stress tensor 7,
Eulerian logarithmic strain h , temperature 7 and a set of
internal state variables T

G(r,h, T,Y)=u— L7-: h — sT,
Po

(19)

where py is the density in the reference configuration, s and u
are the specific entropy and internal energy respectively.
From the 2nd law of thermodynamics, the dissipation energy
D can be written in the form of Clausius—Duhem inequality

D=1:D— pyGii — Ts) > 0. (20)

The logarithmic rate of the Gibbs free energy is taken in
equation (19). Note that a scalar subjected to an objective rate
equals to its conventional time rate, the following equation is
derived. An circle hat denotes the logarithmic rate in the
following text for brevity

Co;log -5 — L%log: h — LT; lollog — ST —sT

Po Po

the following equation is obtained after rearrangement of
equation (21)

21

u—s'T:G+L7°':h+LT:l°1+sT.
Po Po

(22)

4 The relationship between Kirchhoff stress 7 and Cauchy stress o is
T = Jo, where J is the determinant of the deformation gradient F, i.e.,
J = det|F|. Assuming phase transformation to be volume preserving, J is
approximately equivalent to 1, so 7 ~ o. Kirchhoff stress 7 and Eulerian
logarithmic strain h, called an energetic conjugate pair [65], are usually
paired up in the formation of free energy potentials.
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Substitute equation (22) into Clausius—Duhem inequality — potential G is employed as follows
(20), the dissipation energy is rearranged as the following 1 1
G=—T18—- —7[al—-T) + h"]
. . 2pg Po
D= —pyG — pysT —7:h > 0. (23) T .
+ c[(T - Ty — Tln(F)] — so(T — To) + up + —f (&),
Recall that the Gibbs free energy G(7, T, Y) is a con- 0 Po (29)

tinuous function, chain rule differentiation can be applied on
the Gibbs free energy with respect to its independent state
variables (i.e. Kirchhoff stress 7, temperature 7 and internal
state variables Y'), which gives

. 9G oG .. G
G20 4,964, 96 4
or | or T or

(24)
Substitute equation (24) into equation (23), the following
expression for the dissipation energy D is acquired

oG oG .
D=—|p,— +h|: 7 — — : T
(Poa_l_ + ) T (PoaT +S)
—poa—G:'i'>0.

oY )

Following the standard Coleman—Noll procedure, all
admissible values for +, 7 and Y have to comply with the
dissipation inequality (25) regardless of thermodynamic
paths, thereby the constitutive relationships between stress
and strain, entropy and temperature can be inferred as

oG
h=—p,—, 26
Po or (26)

oG
= _p,—. 27
s Po a7 27

Substitute equations (26) and (27) into equation (25), the
following reduced form of the dissipation inequality is
acquired

0G .

el T 0.

. 2
oY 29

3.2. Constitutive modeling for SMAs

3.2.1. Thermodynamic potential. The formulation of the
proposed model is based on the thermodynamic framework
presented in section 3 and the early SMA model developed by
Lagoudas and coworkers [7, 29] for small deformation
analysis. The model is able to predict the pseudoelastic
(isothermal) and actuation (isobaric) response under large
deformation including both large strain and large rotation. A
quadratic Gibbs free energy potential G is introduced in
equation (29), in which Kirchhoff stress tensor 7 and
temperature 7 are chosen as the independent state variables.
The martensitic volume fraction £ and the second order
transformation strain tensor h” are chosen as internal state
variables Y = {&, h"} to capture the material response
exhibited by polycrystalline SMAs. The Gibbs free energy

where S is the effective compliance tensor calculated by
equation (30), S4 is the compliance tensor for austenitic phase
while SM is for martensitic phase, and AS is the phase
difference for the compliance tensor. The effective stiffness
tensor C can be gained by taking the inverse of the effective
compliance tensor, ie. C = S~!. o is the second order
thermoelastic expansion tensor, c is the effective specific heat,
so and uo are the effective specific entropy and effective
specific internal energy at the reference state. All the
aforementioned effective variables are determined from
equation (31)—(34). T represents the temperature at current
state while T} is the temperature at reference state

S(€) = 84+ £(SM — 8% = 84 + ¢AS, 30)
a@) =at + {a — at) = o + {Aa, 31)
c(€) =ct +E(M - N =cr+ EAc, (32)
s0(8) = 5¢' + £sg" — 53 = 55" + EAs, (33)
uo(&) = ug' + @y’ — ug) =ug' + EAug.  (34)

A smooth hardening function f(§) is proposed in
equation (35) to account for the hardening effects in
polycrystalline SMAs, such as the plastic strain accumulation
after the training procedure, imperfections located at the grain
boundary, and nano-precipitates hardening effects, etc [1],
where three additional intermediate material parameters aj,
a, a; and four curve fitting parameters ny, n,, n3, ny are
introduced to better treat the smooth transition behaviors at
the initiation and completion of phase transformation

np+1 _ eyl .
ta(e+ S+ S pag, >0,
n+1 m+1
f(f) = ! gm+l (1 — gyna+1 . :
5a2(5+ e M ) —a€, £<0
(35
Following the standard Coleman—Noll procedure

described in section 3, the explicit form for constitutive
relation (26) between stress and strain is derived as follows.
Note that the nonlinearity in this constitutive relation is
implied by the transformation strain h”

h= 020 = 5r+ T~ T+
or

(36)
the explicit form for constitutive relation (27) between
entropy s and temperature 7 can also be derived as
s:fpoa—G:iT: aJrcln(z)Jrso 37
or Po Ty
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the reduced form of the dissipation inequality (28) can be
rewritten in terms of the chosen internal state variables
Y = (& h"} as

0G Lo 0G .

—po—: — po—¢ = 0.
Po oh Po agf

(38)
3.2.2. Evolution equation of internal state variables. The
evolution equation for the internal state variables Y = {&, h"'}
is presented here. It is proposed that the logarithmic rate of the
transformation strain h™ is proportional to the rate change of the
martensitic volume fraction &. This proportional evolution rule is
adopted by following the principle of maximum dissipation such
that among all the admissible thermodynamic paths, the one
dissipating the most energy is chosen during the SMAs phase
transformation process [66]. The idea of maximum dissipation
for inelastic materials is not new, it was also widely employed
for plastic deformed materials to derive the associated flow rule
[67]. 1t is worth pointing out that the rate applied on the
transformation strain is the logarithmic rate rather than the
conventional time rate. The explicit evolution rule is as follows

A& >0,

. 39)
Arev, §< O, (

h" = A¢, A:{

where A/ is called the forward transformation direction tensor
and A is called the reverse transformation direction tensor.
They are defined as

Afwd — 2

(40)

in which, 7/ is the deviatoric part of Kirchhoff stress tensor
calculated by 7/ = 7 — %tr(T) 1, 1 is the second order identity
tensor. The effective Mises equivalent stress is given by

/

7= [
= 57"

7/. h"™" and & represent the transformation

strain value and martensitic volume fraction at the reverse
transformation starting point. It is common among available
SMA models that the magnitude of the inelastic recoverable
transformation strain is the same for full transformation under
any applied stress levels. This is true when the stress levels is
high enough to generate maximum oriented martensitic variants.
However, if the applied stress level is not sufficiently high, self-
accommodated martensitic variants will be generated. This
renders the value of transformation strain less than it is in the
high stress level case (i.e. the stress dependency of the
magnitude of the transformation strain). Therefore, an
exponential function H" dependent on current stress levels is
introduced to calculate the current transformation strain as
shown in equation (41), where H™* is the maximum (or
saturated) transformation strain and k;, is a curve fitting material
parameter

chr(.’.) — HmaX(l _ e—kﬁ'). (41)

3.2.3. Transformation function. The objective in this part is to
define a proper transformation criterion to determine the
occurrence of the phase transformation. Recall the reduced

form for dissipation energy is given by inequality (38) and the
relation between h” and ¢ is defined through evolution
equation (39). Substituting evolution equation (39) into
reduced form dissipation inequality (38), the following
equation is obtained

A~ 0 Zye=ri >0 (42)
23

the above equation implies that all the dissipation energy is
directly a result of the change in the martensitic volume
fraction. Based upon this, a scalar variable 7, called the
thermodynamic driving force conjugated to the martensitic
volume fraction &, can thus be defined. Substitution of Gibbs
free energy potential G in equation (29) into equation (42)
yields the explicit expression for 7 as follows

m(r, T, =1 A+ %‘r: AST + 71 Aa(T — Tpy)

| T 1 - | L)+ posoT — pyrug — L,
T() 85

(43)

where AS, Aa, Ac, Asg, and Au are the phase differences
on compliance tensor, thermal expansion tensor, specific heat,
reference entropy and reference internal energy, respectively.
It can be observed that the thermodynamic driving force 7 is a
function of Kirchhoff stress 7, temperature T and martenstic
volume fraction & This indicates that the phase
transformation process can be activated by two independent
sources, namely either the stress or temperature, which
correlates quite well with the experimentally observed stress-
induced and thermally-induced phase transformations in
SMAs. To proceed to the goal of defining a transformation
criteria, it is assumed that whenever the thermodynamic
driving force 7 reaches a critical value Y (—Y), the forward
(reverse) phase transformation takes place. Therefore a
transformation function & can be defined as the
transformation criteria to determine the transformation
occurrence as follows

T—Y, £>0,

b = 44
{—W—Y,£<O. 9

In the infinitesimal strain theory based SMA model [29],
a reference critical value Y, and an additional parameter D
were introduced into Y, through which the thermodynamical
critical value Y becomes a function dependent on applied
stress levels, see in equation (45). Such treatment let the
model consider the effect of applied stress levels on the size
of hysteresis loop. This capability is provided through
capturing the different slopes C4, C,, in the effective stress-
temperature phase diagram. The explicit derivation is
provided from equation (B.7) to equation (B.11) at the model
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calibration part in appendix C.
Yo+ D A &> 0,
vy =40t 07 &> (45)
Yo + DT: N®, £ <O.

As a consequence of the application of the principle of
maximum dissipation [66], the so-called Kuhn—Tucker
constraints are placed on the proposed model, which are
stated as follows for the forward and reverse -cases
respectively

£20; O, T,)=m—-Y<O0;
PE=0; A=M)
£<0; (T, T,0)=-m—Y<O0;

PE=0; (M= A). (46)

3.3. Consistent tangent stiffness and thermal matrix

In this section, a detailed derivation of the consistent tangent
stiffness matrix and the thermal matrix is provided to com-
plete the proposed model. For most typical displacement-
based FE softwares, such as Abaqus, the consistent tangent
matrices are often required to be provided in the UMAT so
that the FE solver can achieve a fast convergence for the
global equilibrium equations. Normally, consistent tangent
matrices can be expressed in the rate form shown in
equation (47), where L is called the consistent tangent stiff-
ness matrix and © is the consistent thermal matrix

+=Lh+ OT (47)
applying the logarithmic rate on constitutive equation (36)

yields

F=Clh—al — (AST+ Aa(T—Tp) + A)ET (48)

taking chain rule differentiation on the transformation func-
tion equation (44) gives

b = 0,P: T+ 0r®T + 9:DE =0 (49)

substituting equation (48) back into equation (49) to qliminate
7 and solving it for £, the following expression for £ can be
obtained

9,®: Ch + (9r® — 8,9: Ca)T

E=— (50)
0:® — 0:P: C(AST + A + Aa(T — Ty))

substituting equation (50) back into the rate form constitutive
equation (48) to eliminate &, considering the phase difference
of thermal expansion coefficients can be ignored for mar-
tensite and austenite phase, the final explicit expression
corresponding to equation (47) can be obtained as follows

. [C(AST + M) ® [CO,P] |;
T=|C+ h
0:® — 0:P: C(AST + A)
I C(AST + AN)(07P — 90,9: Car) T
0:® — 0:P: C(AST + A) 51)

in which the consistent tangent stiffness matrix £ is

[C(AST + A] ® [CO.D]

L=C+ (52)
0:® — 0:P: C(AST + A)
and the consistent thermal matrix © is
6 — —Ca + C(AST + AN(07P — 0,D: Ca). (53)

0:® — 0;P: C(AST + A)

In order to fully determine the explicit values for £ and ©
during the implementation section for the proposed model,
the explicit expressions of the following terms
0-®, 0¢®, 07® used in above equations are derived in
appendix E.

4. Numerical implementation

This section focuses on the implementation of the proposed
model within FE solvers to solve boundary value problems
(BVPs). The implementation flowchart is shown in figure 1.
While typically stress and strain information are provided
from FE solver, the initial input information used in this
model are only the temperatures T,, A T, and deformation
gradients at current step F,, and next step F,,, ;. The reason
for using only these information is that other tensorial
variables have been rotated by the FE solver before they are
used as inputs, in which the rotation tensor is calculated
based on the other non-integrable objective rates. This
consequently leads to the artificial stress errors described in
section 1. During the implementation for the proposed
model, a pre-calculation and a rotation procedure are
employed before calling the main UMAT subroutine. In the
pre-calculation procedure, the logarithmic strain at current
step h,, and next step h,_,, are calculated based on F, and
F,.,. The incremental rotation tensor AR/ based on the
logarithmic rate can be calculated by using the exponential
map scheme [54, 63, 68]. In the rotation procedure, ten-
sorial variables including h,, hY and A, are rotated from
step n configuration to the new configuration at step n + 1
by using the obtained AR/ %, thus, the so-called principle of
objectivity is preserved.

The rest of implementation procedure consists of two
steps, the first step is called the thermoelastic predictor and
the second step is called the transformation corrector. Dur-
ing the initialization of thermoelastic step, the total strain
h, . | and current temperature 7,,, | = T, + AT, are provided.
The initial internal state variables Tfloll are assumed to be
the same as Y, for the initial Kuhn-Tucker consistency
checking, i.e. ), < 0. If the initial value of ®) | satisfies
the consistency checking, the n + 1 step is detected as a
thermoelastic response and the UMAT returns to global FE
solver for next increment. In case of consistency condition
violated, the second step called the transformation corrector
is activated to find the updated internal state variables Tflkjl
in order to regain the Kuhn—Tucker consistency. A detailed
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Figure 1. Flowchart for the used variables in the proposed model and the UMAT integration with the global FE solver.

summary for the implementation procedure is listed in the
table 1.

4.1. Thermoelastic prediction

Take the (n + 1)th step as an example to go through the
thermoelastic prediction process. The total strain tensor h,,
and the temperature 7, , | are provided from Pre-calculation
procedure, and the initial internal state variables Tfloi | are
assumed the same as Y,

r(0) _ 0 _
h 5nJrl -

n+1l — h;r; (54)

e

Based on equation (54), the initial guess for Kirchhoff

stress 7-5,011 can be calculated through the constitutive

equation (55). Here the integer in the upper parenthesis
represents how many iterations have been performed during
the transformation correction procedure, and integer zero
means that this step is just an initial guess in the thermoelastic
procedure. The initial calculation for stress T(noll can be
obtained

[(O)
Tht1=

Culhyi1 — 7O — O (T, 11 — T)].

n+1

(55)

After the calculation of 79 |, the value of transformation

n+1°
function @;011 can be evaluated based on equations (43) and
(44) for the initial Kuhn-Tucker consistency checking

O = (T, T, YLD (56)

Table 1. The implementation procedure for the proposed finite strain
SMA model.

1. Initialization
 Conduct pre-calculation and rotation procedures.

k=05 €0, = 6 B By
2. Thermoelastic Predictor

* T = Clll e = b)Y — Ty = Tl

* Calculate ®) .

* IF ), < tol, GOTO 4 (thermoelastic response).

« IF &) | > tol, GOTO 3 (transformation happens).
. Transformation Corrector
* Calculate residual matrix

IV}

k k k k
RS = —h D + k7 + ASL(EY), - &)
k k k
q);ll = CI)(TZJ—I’ JATRH 55&1)

* Perform the Newton-Raphson iterations in equation (60).
* Update variables ¢ Elkjll), RETD SERD

(k+1) _ ¢ (k+1)
€n+l - éLnJrl + Aé‘nJrl
rk+1)  _ gtk tr(k+1
hnr+(l ) - hnﬁf(l) + Ahnik(l )
*k+1) _ cA k+1
S =804 ¢4 PAS

e [F @;kjll) > tol, GOTO step 3 for the next local itera-
tion, k = k + 1.
ELSE GOTO step 4

Calculate consistent stiffness matrix L and thermal matrix ©.
eL—C+ [C(AST + A] ® [CO,D]

0cd — 0,0: C(AST + A)
C(AST + A)(9r® — 0,9: Car)

0:® — 0;P: C(AST + A)
. Exit UMAT and proceed to the global FE solver for the next
increment.

O =—Ca+




Smart Mater. Struct. 28 (2019) 074004 L Xu et al
140 1400
120 - 1200
/ / / / /'
/ / I / / 4
100 | / / 1000 f / /
z / / T | : /
= / o 1 / /
g 80| / / =. 800 |- [ / !
-§ - 1 - / § ) 4 - /
— = —= . g L — - -1~
2 6o === 7 ! » 600 | ==~ I ;
E /I ./ ./ ‘/ /. True(1)
- - . = — - — = ‘Eng.(1
S 40l R Ry - —— Case 1 200 | ,.:::-. ________ Tng(z)
= - - Case?2 rue(2)
- — Case3 T T Eng.2)
20 - 200 1 True(3)
= = Eng.(3)
0 . 1 . 1 . 1 1 1 1 0 L X L X L X L X L X L
0 2 4 6 8 10 12 14 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Displacement 4 [mm] Strain

(a) Load and displacement curve

(b) Stress and strain curve

Figure 2. Three sets of load—displacement curves are interpreted into the engineering scale stress—strain curve for the calibration of
infinitesimal model, and the true stress—strain curve for the calibration of proposed model. (Engineering scale is denoted by Eng. and true

scale is denoted by True.)

Table 2. A set of representative material parameters used for the parametric numerical study [1, 29].

Type Parameter Value Parameter Value
Es 60 (GPa) Cy 8 (MPaK ™)
Ey 40 (GPa) Cu 6 MPaK ™)
Key material parameters Vg = Uy 0.3 M 333 (K)
12 au=ay 10x107° K™ M; 220 (K)
Hmax 3%, 5%, 8% A 274 (K)
k, 0.02 v 370 (K)
Smooth hardening parameters n 0.5 ns 0.5
4 np 0.5 ny 0.5

If the calculated value of transformation function @;Oll
remains under the transformation surface (i.e. @Eloll < ‘tol’,
‘tol’ is usually set to be 107°), step n + 1 is detected as a
thermoelastic response. Therefore the values of current state
variables 7) | and Y}, are accepted as correct and the
UMAT proceeds to the global FE solver for the next incre-
ment. In case the transformation surface is violated (i.e.
@) | > tol), the transformation corrector step is activated to
find the updated state variables until the consistency

equation (46) is preserved.

4.2. Transformation correction

This part addresses the iterative procedures required for the
transformation corrector to restore the Kuhn-Tucker con-
sistency. In general, the transformation corrector is nothing
but a set of Newton-Raphson iterations on equations (57) and
(58) to find the updated internal state variables. Take the kth
local iteration for example, the corrector is activated to find a
set of Y%, which makes the residual terms R7%) in
equation (57) and transformation function @), in

equation (58) less than ‘tol’

R/ = —hi®) + hy + AN (") - ¢, (57)
q)g?rl = ‘I)(ngkll’ Loy, giﬁl)' (58)

This objective is equivalent to the following convergence
conditions

|£(k+1) _

=l <ol D — wE)] < ol

(59)

Use the standard Newton-Raphson procedure’ to solve
equations (57) and (58)

—1

Af(k+ 1 aef), 99, ®
ntl o¢ on” o
- (60)
tr(k+1) HR" O HRI"®) tr(k)
Al s ot R

5 The explicit expression for the Jacobian matrix during this Newton-
Raphson iteration in equation (60) is quite complicated. The symbolic
calculation tool in MATLAB is used here to find the Jacobian matrix, and the
authors suggest interested readers to utilize this method to perform the
tedious calculation.
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Table 3. Elastic modulus and transformation strain calibrated based on engineering and true scale stress—strain curves.

Engineering scale Case 1 Case2 Case 3 True scale Case 1 Case2 Case 3
E, (GPa) 60.00 60.00 60.00 E, (GPa) 60.00 60.00 60.00
Ep(GPa) 35.48 34.06 32.05 Ep(GPa) 40.00 40.00 40.00
H} 304% 5.13% 8.33% H"™™ 3.00% 5.00%  8.00%

eng

The following results on internal state variables at
(k 4+ D)th iteration can be obtained

(k+1) (k) (k+1)

5n+1 — é.nJrl Aé.nJrl (61)
tr(k+1) tr(k) rk+1) |

hnr+1 hnr+1 Ahnr+1

Once the converged values of {h”7 %D, ¢* D} are found,

n+1
the current transformation corrector step is labeled as finished
and the UMAT proceeds to the next increment. Otherwise, the
Newton-Raphson procedure exits at this step after a certain
number of iterations and the current FE increment step stops.

5. Numerical results

In this section, the proposed model is used to predict the
stress/thermally-induced phase transformations in SMAs
subjected to general three-dimensional thermo-mechanical
loading. Several numerical examples are presented here to test
the capabilities of this model to account for large strains and
rotations, and also to resolve the artificial stress errors issue.
First, a parametric analysis on a uniaxial SMA bar is studied
to show that the proposed model is able to consider the
geometry nonlinearity induced by large strains. Second, two
BVPs, i.e. an SMA beam and an SMA torque tube subjected
to stress-induced phase transformations, are tested as large
rotation cases. To show the model is able to resolve the
artificial stress errors issue, the cyclic response of the beam
and the torque tube are obtained via the proposed model, and
the results are compared against the predictions obtained by
the Abaqus nonlinear solver®. Next, an isobaric BVP of an
SMA torque tube subjected to varying thermal loading is
investigated to predict the thermally-induced phase transfor-
mation. In the end, to show the model is able to capture the
non-proportional local stress and strain evolutions, a 3D solid
flexible structure undergoing a self-expanding process is
studied. The proposed model is anticipated to be further
validated against experimental data of NiTi and NiTiHf
SMAs under uniaxial and other non-uniform loading condi-
tions. The ultimate objective is to validate the capability of the
proposed model to predict the response of SMA-based
actuators, such as SMA beams and torque tubes, which are
intended to be integrated with the future supersonic transport
aircraft to realize the morphing capabilities to reduce the sonic
boom noise.

§ As the nonlinear solver is activated for implicit analysis (i.e. select
NLGEOM on), Abaqus automatically use the logarithmic strain as its strain
measure, and the Jaumann rate is the utilized objective rate to account for the
large rotation [69].

10

Loading traction

Figure 3. Schematic for the SMA beam subjected to isothermal
bending load condition at constant temperature 306 K.

5.1. SMA bar under isothermal loading

To test the capability of the proposed model to account for the
effects of large strain, an SMA prismatic bar is studied under
uniaxial isothermal loading condition. A parametric study is
performed with the maximum transformation strain
H"* = 3%, 5%, 8% to represent three different loading
cases. A group of representative material parameters (two
material parameter groups combined) used in this example are
listed in table 2 referenced from [1, 29]. The SMA prismatic
bar has a length L = 100 (mm) and an square cross section
with an edge length @ = 10 (mm). It is subjected to a pro-
portional force loading up to 120 (kN) then unloading to O
(kN), the temperature is kept constant at 380 K throughout the
process. Generally, the load—displacement curves provided
from such uniaxial experiments are interpreted into the
engineering scale stress—strain curves to facilitate the model
calibration. However, when the materials experience a strain
that is no longer considered small, the geometry nonlinearity
due to such strain has to be taken into consideration. To
demonstrate that the proposed model accounts for this, the
calibrated values of elastic modulus (E,4, E,;) and maximum
transformation strain (H™*") based on the true stress—strain
curve are compared against the values from its infinitesimal
counterpart. Three sets of load—displacement curves are
generated shown in figure 2(a). They are interpreted into
stress—strain curves in two scales, i.e. the true stress (Cauchy
stress) versus the true strain (logarithmic strain) curve and the
engineering stress (nominal stress) versus engineering strain
(infinitesimal strain) curve. By using the calibration procedure
described in appendix C, the calibrated values of E4, Ey; and
H™"* summarized in table 3.

Table 3 shows that the values of E, are identical in both
the two scales. However, the values of Ej, in engineering
scale change from 35.48 to 32.05 GPa, which indicates a
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Figure 4. The cyclic stress—strain response for a bottom surface point under isothermal loading condition.
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Figure 5. The cyclic stress—strain response for an upper surface point under isothermal loading condition.

material softening. Actually, such material softning is not
real. Instead, it is the effect of disregarding the geometric
nonlinearity induced by large strain as described previously.
In this case, the geometric nonlinearity means that the bar
needs to contract its cross section to compensate for its
elongation to preserve the volume conservation. Disregarding
the change of cross section results in an unreal decreasing on
the values of E,,. By doing the calibration based on the true
stress—strain curve instead of the engineering one, the pro-
posed model is able to exclude the geometry nonlinearity
induced by large strain, so that the calibrated values of Ej,
remain the same in the three loading cases from true scale.
Besides, The values of H™* are also worth to be noted.
Although H™** shows different values in the two scales, a
relationship exists between the true scale H"** and the engi-
neering scale Hyg', i.e. H™ = In(1 + Hjg"). Based on the
results from this parametric study, it is shown that the

11

infinitesimal strain assumption may no longer be considered
as an accurate approximation when the strain regime is
beyond 3%. In order to account for the effects caused by large
strain, a finite strain model to consider the geometry non-
linearity is required even in a uniaxial case.

5.2. SMA beam under isothermal loading

The second BVP considered here is an SMA beam subjected
to isothermal loading shown in figure 3. The SMA beam
component has been investigated as bending actuators in [3]
to realize a morphing variable-geometry chevron in order to
change the outer engine shell shape to achieve specific
aerodynamic characteristics. While only one loading cycle
was considered in the previous study, this example examines
the cyclic material and structural response. The studied beam
has the same geometry as the SMA bar in section 5.1. Refer to
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Figure 6. The cyclic load—displacement response for an SMA beam under isothermal loading condition.

Table 4. Calibrated values of material parameters for equiatomic NiTi [29].

Type Parameter Value Parameter Value
E, 60 (GPa) Cyu 7.8 MPaK ™1
Ey 60 (GPa) Cu 73 (MPaK ™)
Key material parameters Vg = Uy 0.3 M, 333 (K)
12 ay=ay 1.0x 1075 ™Y M; 220 (K)
H™max 4.7% Ay 274 (K)
k; 0.021 Ar 370 (K)
Smooth hardening parameters n 0.5 n3 0.5
4 ny 0.5 ny 0.5

figure 3, the beam is simply supported with one node being
fixed to suppress the rigid body motion, and the upper face is
subjected to a traction that ramps up to 24 (MPa) then
decreases to 0 (MPa). Temperature is kept constant at 380 K
throughout the whole numerical experiment. Material para-
meters used in this simulation are summarized in table 4. The
cyclic material and structural response are obtained by the
proposed model for a material point p (in figure 3) located at
the middle bottom position, and are compared against the
results obtained from the Abaqus nonlinear solver.

Figure 4 shows the obtained cyclic longitudinal stress—
strain curve for material point p under tension. As shown in
figure 4(a), the proposed model provided a stable material
response, while the Abaqus nonlinear solver predicted a
shifting, instead of stable, response shown in figure 4(b). The
observation from these results indicate that the spurious
material response is obtained due to the usage of non-
integrable objective rates in Abaqus as discussed in the
introduction. Although the initial several loading cycles are
almost the same in the results provided by Abaqus nonlinear
solver, the accumulation of artificially introduced stress
errors, around —2 MPa for each cycle, gradually drifts the
material response left downwards throughout the 100 loading

cycles. In total, —200 MPa stress residuals together with
—0.6% remnant strains are observed at the end. Such stress
errors consist of almost 18% of the maximum stress levels
experienced by material point p. As a comparison, figure 5
shows 100 stress—strain curves for another material point
subjected to compression at the middle of beam upper sur-
face. The result shows an opposite shifting trend in contrast to
the results of point p. Again, a stable compressive stress—
strain curve are predicted by the proposed model while the
Abaqus nonlinear solver predicts a shifting one. In addition,
figure 6 shows the obtained cyclic load—displacement curves
for point p. It can be seen that the proposed model predicted a
stable structural response while the Abaqus nonlinear solver
predicted a shifting structural response. Based on these
results, it is demonstrated that the Abaqus nonlinear solver
can no longer produce reliable results for the SMA beam
subjected to 100 bending cycles. Therefore, the proposed
model with the capability to eliminate the stress errors is
required for the SMA beam subjected to cyclic loading.

5.3. SMA tube under isothermal loading

In this section, the BVP of a three-dimensional SMA torque
tube under torsion loading is studied. Refer to figure 7(a), the

12
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Figure 7. Schematic for a three-dimensional cylindrical SMA torque tube subjected to isothermal torsion loading.
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Figure 8. Mises stress residuals accumulated after one loading cycle for the torque tube predicted by the proposed model and the Abaqus
nonlinear solver.
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Figure 9. The cyclic stress—strain response for an SMA tube under isothermal loading condition.
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Figure 10. The cyclic load—displacement response for an SMA tube under isothermal loading condition.
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Figure 11. The cyclic temperature-shear strain response for an SMA tube under isobaric loading condition.

tube has an inner radius r = 3.0(mm) and thickness z/
r = 0.1. In order to reduce the computational cost, a repre-
sentative tube segment L/r = 2/3 is analyzed here. Boundary
conditions are depicted in figure 7(b), the tube left face is
fixed and the right face is subjected to a torsion loading. The
torque proportionally increases to 25 (N m) then unloads to 0
(N'm), the temperature is kept constant at 380 K. The torque
tube undergoes a fully forward phase transformation from
austenitic phase to martensitic phase followed by a reverse
phase transformation from martensitic phase to austenitic
phase. The material parameters used in this simulation are
from table 4.

The cyclic shear stress—strain response of a material point
from the tube outer surface at the right end is predicted by the
proposed model and Abaqus nonlinear solver. As shown in
figure 9(b), similar to the results observed in the SMA beam
case, a shifting response is predicted by the Abaqus nonlinear
solver due to the accumulation of shear stress errors. In

contrast, a stable response is predicted by the proposed model
shown in figure 9(a). More specifically, figure 8 shows the
magnitude of stress residual accumulated after one loading
cycle. The value of Mises stress residual predicted by the
proposed model is almost zero compared to a value around 4
MPa predicted by the the Abaqus nonlinear solver. As a result
of the accumulation of such shear stress errors, the shear
stress levels required to start the forward phase transformation
spuriously decreases in the case of Abaqus nonlinear solver
shown in figure 9(b). Besides, the maximum shear stress
levels at the end of forward transformation increases, and the
shape of hysteresis loop also changes. The cyclic structural
response of the torque tube is also provided in figure 10 by
plotting the applied torque versus the twist angle .. It can be
seen that a stable structural response is predicted by the
proposed model shown in figure 10(a) compared to a shifting
structural response predicted by the Abaqus nonlinear solver
shown in figure 10(b). From the observation on these results,
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Figure 12. The cyclic temperature-6, response for

it is seen that the Abaqus nonlinear solver is not able to
predict reliable results for the SMA torque tube subjected to
100 shearing cycles any more. Thus, the proposed model that
can resolve the shear stress errors is required for the SMA
torque tube subjected to cyclic torsion loading.

5.4. SMA tube under isobaric loading

In order to test the capability of the proposed model to predict
the thermally-induced phase transformation in SMAs, a three-
dimensional cylindrical SMA tube is studied under cyclic iso-
baric torsional loading, i.e. subjected to a constant torsion load
with temperature variation cycles. The SMA torque tubes has
been investigated as rotational actuators to realize a morphing
wing during the plane take-off and cruise regime [70-73]. The
design and optimization of such SMA-based morphing structure
requires a thorough understanding on the response of SMA
torque tubes subjected to cyclic isobaric loading. To that end,
the SMA tube component is analyzed under cyclic isobaric
loading conditions. The model has the same geometry and
material information as the tube simulation in section 5.3. The
loading condition is as follows, a 3 N m torque load is applied
to the tube right end and the temperature varies between 250
and 390K for 100 cycles. Cyclic shear strain-temperature and
0, -temperature curves are obtained via the proposed model and
the Abaqus nonlinear solver.

As it is shown in figure 11(a), a stable cyclic shear strain-
temperature response for the tube is predicted by the proposed
model. In contrast, a shifting cyclic strain-temperature response
is predicted by using the Abaqus nonlinear solver shown in
figure 11(b). More specifically, it can be seen that the isobaric
response drifts downwards at 7= 240K and is lifted up at
T = 390K from cycle to cycle due to the stress error accu-
mulation. Similar to the observation on the strain-temperature
response, the cyclic 6,-temperature response is stable in the case
of proposed model, and it is a shifting response predicted by the
Abaqus nonlinear solver. The comparison on 6,-temperature
response is plotted in figure 12. Based upon the analysis of
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Temperature [K]

(b) Temperature-6, curve predicted by Abaqus nonlinear solver

an SMA tube under isobaric loading condition.

SMA tube subjected to thermal loading cycles, it is shown that
the accumulated stress errors from Abaqus nonlinear solver
result in an shifting cyclic isobaric response, and such artificial
stress errors can be eliminated by using the proposed model.

5.5. 3D analysis of a flexible SMA structure

In this section, a 3D solid SMA flexible structure is studied to
demonstrate that the proposed model can be used as a 3D
structural design tool. This SMA flexible structure can be
used as a stent to provide a less invasive method for admin-
istering support to diseased arteries, veins or other vessels in
the human body. They are crimped into a smaller shape
outside the body then inserted into the diseased artery. After
being delivered into the desired position, the flexible structure
expands automatically by using the phase transformation of
SMAs [74]. The loading path of this self-expanding structure
can be described with three steps, i.e. (1) the flexure is firstly
crimped outside the body by external constraints and attached
to a constraint container device called catheter or cannula. (2)
The flexure is inserted into the body while the temperature
increases from the room temperature to the body temperature.
(3) The structure recovers its original shape when the con-
straint is removed [75-77]. Although there are analysis for
similar type of flexible structure by other researchers [78, 79],
among which only a small unit cell of the structure is ana-
lyzed. Here a full-scale 3D SMA flexible structure designed
for repairing aortic dissection [74, 80] is studied to provide
the global response of the structure during the self-expanding
process. The structure is 32 (mm) long, 25.4 (mm) in outer
diameter with 4 struts and 0.5 (mm) thick in the radial
direction. Due to the curvature of the structure strut, the SMA
flexure experiences large rotation and stress concentrations
around the hinge part, which in return results in a complex
local non-proportional stress and strain evolutions at the
hinge. The loading path of this analysis is indicated by the red
curve in figure 13(b). The material parameters used in this
simulation are from table 5.
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Figure 13. The expanded and crimped shapes, loading path, von Mises stress distribution and martensitic volume fraction contour of the
SMA flexible structure during the self-expanding analysis.

Table 5. Calibrated values of material parameters for NiTi (50.8% at Ni) [29].
Type Parameters Value Parameters® Value
E, 32.5 (GPa) Cy 3.5 MPaK™")
Ey 23.0 (GPa) Cu 3.5 (MPaK ™)
Key material parameters Vp = Uy 0.3 M 264 (K)
12 a=ay 22x107° K™ M; 160 (K)
H™max 3.3% Ay 217 (K)
k, N/A Ay 290 (K)
Smooth hardening parameters n 0.17 ns 0.25
4 ny 0.27

ny 0.35

! The values of transformation temperatures (M,, M, A,, Ay) are referenced from [81] in order to realize the self-

expanding process within human body environment, the rest of values of the material parameters are taken from
[29] as they are not provided from [81].

16



Smart Mater. Struct. 28 (2019) 074004

L Xu et al

The expanded and crimped shapes of the SMA flexure
during the analysis are shown in figure 13(a). As illustrated in
figure 13(c), stress concentration due to the strut curved part
is observed. The von Mises contour indicates that a local non-
proportional stress field is evolved at the hinge location
during the crimping process. As shown in figure 13(d), while
the straight strut part is still in the austenitic phase, the stress-
induced martensitic phase transformation is activated by the
stress concentration at the hinge location subjected to bend-
ing. The martensitic volume fraction contour for the flexure
during the crimping process is shown in figure 13(d). The
global structural response of the SMA flexure for a material
point P (see figure 13(c)) is provided in terms of a 3D stress-
temperature-displacement curve in figure 13(b), in which the
red curve indicates the actual response while the blue curve is
the projection of the blue curve on the stress-radial reduction
ratio plane. This well captured non-proportional stress evol-
ution and martensitic phase transformation in this example
demonstrates that the proposed model can be used as an
efficient tool for the 3D analysis and design of complex
SMA-based structures.

6. Concluding remarks

Based on the SMA model proposed by Lagoudas and co-
workers for small deformation analysis, a three-dimensional
constitutive model for martensitic transformation in poly-
crystalline SMAs accounting for large deformation has been
proposed in this work. Three important characteristics in SMA
response are considered, i.e. the smooth transition during the
phase transformation, the stress-dependent transformation strain
to account for the coexistence of oriented/self-accommodated
martensitic variants, and a stress-dependent critical driving force
to consider the effect of applied stress levels on the size of the
hysteresis loop. The proposed model is formulated based on the
finite deformation framework that utilizes logarithmic strain and
rate such that it not only accounts for the large strains and
rotations that an SMA component may undertake, but also
resolves the artificial stress errors that are caused by using other
non-integrable objective rates. The proposed model is able to
predict the stress-induced and thermally induced phase trans-
formations in SMAs under general three-dimensional thermo-
mechanical loading. In particular, it was shown in the example
of an SMA bar that the proposed model accounts for the geo-
metry nonlinearity induced by large strains, so that it corrects
the spurious material softening in the results from its infinite-
simal counterpart. In the numerical examples of an SMA beam
and an SMA torque tube, it was demonstrated that the proposed
model captures the large rotations that SMA-based components
may undertake. By comparing the predicted cyclic response to
the results obtained through the Abaqus nonlinear solver, the
proposed model demonstrated that it effectively resolves the
artificial stress errors. In the end, a 3D solid flexible structure
experiencing local, non-proportional stress and strain evolution
was analyzed by the proposed model, which shows the pro-
posed model can be used as an efficient tool for the 3D analysis
and design of complex SMA-based structures. The detailed
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formulation of the proposed model and its implementation
procedures make it readily used by other researchers. The
model can be further extended to incorporate additional non-
linear phenomena exhibited by SMAs, such as transformation-
induced plasticity, viscoplasticity, and damage evolution.
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Appendix A. Artificial stress residuals due to the
non-integrable objective rates

In this appendix section, BVP is investigated to study the artifi-
cial stress residuals caused by using other non-integrable objec-
tive rates. As it is discussed in the introduction, the rate form
hypoelastic constitutive theory has been criticized for its incon-
sistent choices on objective rates [63], this includes the well-
known objective rates (e.g. Zaremba—Jaumann rate, Green—

Figure A1. The schematic of a simple elastic square under closed
path cyclic loading.
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Figure A2. Kirchhoff stress components predicted by hypoelastic equation using Jaumann rate under 10 loading cycles.
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Figure A3. Kirchhoff stress components predicted by hypoelastic equation using Green—Naghdi rate under 10 loading cycles.

Naghdi rate, Truesdell rate, etc). In other words, the rate form
hypoelastic constitutive equation fails to be integrated to deliver
an algebraic hyperelastic constitutive equation via the so-called
objective rates, because of which spurious phenomena (e.g. shear
stress oscillation, artificial stress residuals, etc) are often observed
in a simple elastic deformation [46]. It was not until recently such
self-inconsistent issues about hypoelastic constitutive models has
been resolved by the logarithmic rate proposed by [46-53]. As
their work proved that the logarithmic rate of the logarithmic
strain h of its Eulerian type is equivalent to the strain rate D, by
which a grade-zero hypoelastic model can be exactly integrated
into a finite strain elastic model based on logarithmic strain.

A.1. The cyclic response of an elastic square

Refer to figure A1l for the BVP schematics, a two-dimensional
elastic square with length H is under a closed path cyclic
loading. The upper line of the square is subjected to a dis-
placement control circular deformation, the deformation over
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geometry ratio is as r/H = 0.2 to induce large deformation
strain. The stress components are examined by the hypoe-
lastic equation (A.1) for 10 loading cycles. In equation (A.1),
C is the stiffness tensor and a circle over 7 means the different
objective rates adopted

T=C:D. (A.1)
Based on the results from [47], hypoelastic equation (A.1) can
be self-consistently integrated to a hyperelastic constitutive
equation (A.2) based on logarithmic strain through the loga-
rithmic corotational integration [64]

T=20C: h (A2)

Kirchhoff stress components are obtained by equation (A.1)
with three different objective rates, i.e. Jaumman rate, Green—
Naghdi rate and Logarithmic rate. The predicted results are
presented in figures A2—A4. The stress results are normalized
by the material Young’s modulus E.



Smart Mater. Struct. 28 (2019) 074004

L Xu et al

0.7

0.6 Logarithmic rate
0.5
0.4
0.3
02+, N O ' !

' \
014 A \ ) v,

Normalized Stress T/F

0.0

T12
T T11
Ta2

Cycle Number

Figure A4. Kirchhoff stress components predicted by hypoelastic equation using Logarithmic rate under 10 loading cycles.

Table A1. Stress residuals obtained by hypoelastic equation (A.1)
with different objective rates for the elastic square.

Normalized Green—
stress Logarithmic rate  Jaumman rate  Naghdi rate
m/E —1.71e-5 0.0164 2.17 e-6
T2/E 2.17e-6 0.0411 —0.023
™ /E 1.71e-5 —0.0164 1.76e-5

The stress residuals are examined at the end of the
loading cycle and summarized in table Al. First, the stress
components in all the three cases showed periodic oscillation.
Since the material is confined to behave elastically, the
deformation should be indissipative to anticipate that all the
stress components should return to zero value in the end.
However, the predicted stress components in the cases of
Jaumman rate and Green—Naghdi rate showed artificial stress
residuals are introduced. Refer to figure A2 for the case of
Jaumman rate, stress residuals 7;; is 0.0164, 75, is —0.0164
and 7, is 0.0411 after the 10 loading cycles. In the case of
Green—Naghdi rate, although there are inconsiderable stress
residuals for 7;; and 75, components, the shear residuals 7,
is —0.023. In contrast, all the stress residuals are almost
negligible in the case of Logarithmic rate, which demonstrates
that the hypoelastic constitutive equation utilizing logarithmic
rate can be self-consistently integrated to deliver a hyper-
elastic equation based on the logarithmic strain. Interested
readers are encouraged to further read [52, 82].

Appendix B. Calibration of the material parameters

In this section, the material parameters utilized in the pro-
posed model are identified from a set of one-dimensional
experimental data. Note that the strain measure used here
should be in the true (or logarithmic) scale rather than the
engineering (or infinitesimal) scale. Material parameters used

19

in the proposed model can be categorized into three groups,
i.e. the key material parameters, smooth hardening parameters
and intermediate parameters. First, the material constants such
as elastic modulus E4, E,;, Poisson’s ratios v4 and vg, the
thermal expansion tensors o4 and oy, stress influenced
coefficients C4 and C,,; from the phase diagram (or called
clausius clapeyron coefficient), critical phase transformation
temperatures A,, As M, My at stress free state are determined.
Secondly, the hardening parameters describing the smooth
transition feature are discussed. Finally, the intermediate
parameters are derived based on the aforementioned two
parameter groups. All the material parameters used in this
model are summarized in table 2.

Because the data is provided in a one-dimensional case,
all tensorial variables of the proposed model have to be
reduced into a 1D scalar value. For example, the stress tensor
is reduced as 7T — 7; = 7; logarithmic strain tensor is
reduced as h — hy; = A, etc. Constitutive equation (36) can

be rewritten as one-dimensional form as follows
T=E[h — (T — Ty) — h'"], (B.1)

where the effective elastic modulus E is calculated by using
the rule of mixture as follows

E=[1/E*+ ¢(1/EM — 1/EM)]

The evolution equation (39) is also reduced in one-dimen-
sional form as

B.2)

H®" (0) sgn(T)
e
3

&> 0,

A=Au= ;£ <0

(B.3)

the thermodynamic driving force 7 in the one-dimensional
case can thus be obtained

T=TA + %ASTZ + 7Aa(T — To) + pyAseT

r

il

- pOAc[T T — Tln(
0
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the transformation function in one-dimensional form can be
calculated based on equation (B.4). Considering the phase
difference for the thermal expansion A« and specific heat Ac
are small enough to be ignored, the following transformation
functions for the forward case and the reverse case can be
obtained respectively

Pppa(7, T, &) = [TA + %ASTZ + poAsoT

of
— pgAug — = |—-1Y=0, B.5
PoRUg 3{] (B.5)
Dy (1, T, &) = —[TA + %ASTZ + poAsyT
of
— poAug — —|—-Y=0. B.6
PoRUQ a£:| ( )

As described in the first paragraph of this section, there are
three sets of material parameters that need to be identified.
First, let’s consider the material constants (E, Eyy, Va, Upg, Qig,
ayy ). Elastic modulus E4, E), can be determined through a
pseudoelastic stress and strain curve by calculating the slopes
at martensitic phase and austenite phase. Poisson’s ratio is
attained using a widely accepted value of v, = vy, = 0.33
found in [29]. The thermal expansion coefficients are usually
considered as a4 = ayy, Which can be calibrated through an
isobaric actuation experiment. The maximum transformation
strain H™** can be determined from the pseudoelastic exper-
imental and the value of parameter k, are chosen to best fit the
H" curve. The stress influence coefficients and the critical
phase transformation temperatures (Ca, Cp, M, My, A;, A))
can be calibrated through the phase diagram. Second, the
material parameters related to the smooth hardening features
are discussed. The coefficients n;, n,, n3, ny without specific
physical meanings are determined to best match the
smoothness in corners of material response. Lastly, there are
seven intermediate material parameters (poAsg, poQAug, a1, as,
as, Yo and D) that need to be calculated to complete the
model. Determination of such intermediate parameters
requires a set of seven algebraic equations. The needed four
equations come from transformation constraints as the Kuhn—
Tucker condition equation (46) (i.e. @, (7, T, £) = 0). The
fifth equation comes from the continuity of Gibbs free energy
at the end of the forward transformation (£ = 1). The needed
five algebraic equations are summarized as follows

1. Start of the forward transformation at zero stress
(1=0;T=M;{=0). (I)fwd(oa M;, 0) = pOASOM
— polAug —a3 — =0

. Finish of the forward transformation at zero stress
T=0T=M3E=1).  Bpa(0, My, 1) = pyAsoMs
— polAug —a —az — =0

. Start of reverse transformation under zero stress
(T=0T=A38=1). P00, A1) = _pOASOMv
+ pglAug +ay —az — =0

. Finish of the reverse transformation under zero stress
(r=0,T= Af; §=0). D, (0, Af’ 0) = _p()ASOAf +
polAug — a3 — Yo =0
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5. The gibbs free energy continuity at the end of forward
transformation (§ = 1). f(§ = Dlezo = f(§ = Dli<o

The above five algebraic equations yield the following
expression for the five out of seven intermediate model
parameters

1
polAug = EPASO(Ms + Ar)

ar = pyAso(My — My);
1
ny+ 1

ar = pyAso(Ay — Ay)

L al(l + ! )

4 I’l1+1

a—la 1+
T 4

1
Yy = EPOASO(Mr —Ar) — a3 (B.7)

Another two equations are derived from the Kuhn-Tucker
condition in order to complete the calculation. For a one-
dimensional uniaxial experiment, the Kuhn-Tucker condition
(46) requires equation (B.8) to hold true at any specific stress
level 7*

AP = 8,9 dr + 97® dT + 9P d¢ = 0. (B.8)

Evaluate d® at the start point of the forward phase
transformation (i.e. £ = 0), and at the finish point of the
forward phase transformation (i.e. £ = 1), the incremental
part of martensitic volume fraction should be zero (i.e.
d¢ = 0) in both of the aforementioned cases. Therefore, the
relationships between the stress temperature coefficients Cy,,
C,4 and the stress temperature slopes j—; can be obtained.

For the forward transformation case, £ > 0

=4 - —PAs . (B.9)
dT |eso A+ 710 A+ AST — 0.7 |«
For the reverse transformation case, & < 0
c. = 97 _ —pAso
AT iy A+ T 0N+ AST+ 0Y |
(B.10)

Using the equations (B.9) and (B.10), the rest two inter-
mediate material parameters pyAsy and D can thus be
expressed as follows
D— (Cy — CHIH™ + 7O H™ + TAS]
(Cur + COH + TOHW)
2Cy C4[H" 4+ 170HY + TAS]

Cu + Cy

(B.11)

PolAsy = — (B.12)

Appendix C. Model validation

In order to validate the proposed model against experimental
results, a uniaxial pseudoelastic tensile test is performed on a
NiTi SMA [1]. In the experiment, a NiTi SMA strip is loaded
at a constant temperature of 320 K, which is larger than the
austenitic finish temperature An The strip is subjected to
traction up to 600 MPa then unloaded to 0 MPa. The material
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Table C1. Calibrated material parameters of a NiTi SMA used for the model validation.

Type Parameter Value Parameter Value
E, 41 (GPa) Ca 5.5 (MPaK™ ")
Ey 22 (GPa) Cu 5.5 (MPaK ")
Key material parameters Uy = Uy 0.33 M, 237 (K)
12 ay=ay 1.0x 1075 K™ M; 217.5 (K)
H™max 3.35% Ay 254 (K)
k, N/A Ay 282 (K)
Smooth hardening parameters n 0.15 ns 0.25
600 1 partial derivative of transformation function ® with respect to
stress T can be obtained through differentiating equation (44)
500 L -~ - - == by 7. Utilize the expression for 7 in equation (43), it obtains
/
7/ .
— 400 |- 87T—8Y, >O,
& 0,P = T T 5 (D.1)
= , .7 —0,m — 0.Y, £<0,
& 300 | _ -
7] 1 _
(0] Y/
Boool J - - ~Expriment where the partial derivative of the thermodynamic driving
/) —— Simulation force 7 with respect to stress 7 is
1004,
K 0, = A+ (0 A)T + AST 4+ Aa(T — Tp) (D.2)
000 001 002 003 004 005 006 0.07

Logarithmic Strain

Figure C1. The validation of the proposed model against the
experimental data through uniaxial stress-strain response of NiTi
SMA, the dashed black line indicates the experimental data and the
solid red line is the prediction by the proposed model.

parameters listed in table C1 are calibrated based on the
experimental result. Figure C1 shows the comparison
between the experimental results and the simulations from the
proposed model, it clearly demonstrates that the proposed
model predicts the stress-strain response of the NiTi strip
quite well, including the phase transformation starting and
finishing points, and the size of the hysteresis loop. As the
experimentally tested specimen is an untrained SMA, there is
an amount of transformation-induced plastic strain remained
at the end of the loading. This phenomenon can be captured
by extending the current model with the consideration of the
transformation-induced plasticity.

Appendix D. Supplementary calculation for
consistent tangent stiffness and thermal matrix

The consistent tangent stiffness and thermal matrix are
derived in section 3.3. In order to determine the explicit
values for £ and © during the implementation of the proposed
model, the explicit expressions of the following terms
0.®, 0:®, 07 ® used in equation (51) are needed. First, the
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and the partial derivative of critical driving force value Y with
respect to stress T is

9,Y = D[A + (9.A)T] (D.3)

based on the expression for the transformation direction ten-
sor in equation (40), the partial derivative of A with respect to
stress 7 are provided for the forward and reverse transfor-
mation cases as follows

3 cur T 3 pycur T’ ¢
2o H @ T 4 2H af(;), £>0
£<0

O-A

" (D4)

0,

where the partial derivative of the term (;) with respect to

stress 7 is provided in the following equation, in which I is
the fourth order identity tensor and 1 is the second order
identity tensor. It can be observed that A only has value for
the forward transformation case while it has value zero for the
reverse transformation case

T/

o Z)
7

/
r

7—
to calculate the partial derivative of the current maximum

transformation strain H“" with respect to stress 7, the fol-
lowing result can be obtained based on equation (41)

1

7

/
(1 g2 (D.5)
3 37

3 !

8Tchr — _HmaxktT_’ (D6)
2 T
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Follow the similar procedure to obtain 0,9, the partial
derivative of the transformation function ¢ with respect to
martensitic volume fraction &, and the partial derivative of the
transformation function ® with respect to temperature 7 can
be calculated as follows

salm& "+ m(1 = Oml, £ 0,

65<I> 1 n3—1 ng—1 ¢ ’
—Eaz[n3£ 57 ng (1 — O™, €<0

(D.7)

T Aa + pyAcin (%) + pylsg, &> 0,
ord = i
—[7’: Aa + pyAcin (%) + pOASo], £€<0

(D.8)
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